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SUMMARY

In this paper we consider the general balance of designs for two-way elimination of
heterogeneity. In particular cases, the property is discussed in relation to strictly
orthogonal and efficiency balanced designs.
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1. Introduction

Let us consider a design for two-way elimination of heterogeneity in which v treatments
are allocated to n experimental units arranged in b; rows and by columns. The
appropriate mixed model may be expressed as

y = A'T + D18;+D}B,4+u (1)

where y is an n x 1 vector of observations, A’, D/ and Ds -arenxwv, nxby, nxby
design matrices for treatments, rows and columns, respectively, 7, 8, and 3, - are
v X1, by x1, and by x 1 vectors of unknown treatment effects, of unknown row effects
and of unknown column effects, respectively, and u is an n x 1 vector of errors. Let 1,
denote the a x 1 vector of ones. Further, let r = A1, k; = D11, and ky = Do1,,
denote the vector of treatment replications, the vector of row sizes, and the vector of
column sizes, respectively, and let R = AA/, Ky = D;Dj, and K; = DyD), denote
the diagonal matrices with the elements of r, ki, and ks on their diagonals. Moreover,
let Ny = AD] be the (v x by) treatment-row incidence matrix, let Ny = ADj be the
(v x by) treatment-column incidence matrix, and let Ni2 = D1Dj be the (by x by)
row-column incidence matrix.
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2. Orthogonal block structure

In model (1) the components B, ,sz_, and u;;, of 31, By, and u are uncorrelated
random variables with zero means and variances

Var(8,,) = (f%l , Var(fy,) = cr%z, and Var(u;;;,) = o2 (2)
The dispersion matrices are
D(B,) = U%llﬁl ,D(B,y) = UézIﬁz, and D(u) = ¢°1,, (3)

where I, denotes the identity matrix of order a. Because treatment parameters 74 in
T are constant, we have

Var(y;j) = 0% + 0?51 + O’%z

and
of i=i j#j
Cov(yij yirjr) = o5, i#i j=73'
0 i £

Then the expected value and the dispersion matrix for the observations are
E(y)=A'T
and :
D(y) =V =03 D'D; + 0} DyDs + 0°L,.
We first consider the orthogonal blocking structure of the design.

DEFINITION 1. (Houtman and Speed, 1983). A design is said to have an orthogonal
block structure if the n x n dispersion matrix V can be written as

t
V= ngsp,
p=0

where o, > 0 for all p, and Sp are symmetric, idempotent, pairwise orthogonal
matrices summing up to the identity matrix, i.e.

Sp=8,=82,5,8,=8,5,=0 if p#gq, and D8, =1, (4)
P
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Let
So =1,1,,/n, S1 = D{K;7!D; — Sq, So = DK, 1Dy — S,
and (5)
S; =1-D/K; 'D; — DKy 'Dy + Sg.
Then

V =02Sp + 038, + 028, + 0283,

there 08 =03+ 0% —03 = byog +biog +0°, o = byop + 0%, of = biog, +
0%, and 0% =02

For matrices S;, 7 = 0,1,2, and 3, which are defined in (5), the conditions (4)
do not always hold. Thereby, in general, for the conditions (5), a design for two-way
elimination of heterogeneity does not necessarily has the orthogonal block structure.
However, conditions (4) are satisfied for designs with the matrix N3 = 1,,1;_, which
are usually called row-column designs. These designs were considered by Houtman
and Speed (1983) and Mejza (1992). More general designs for two-way elimination of
heterogeneity, i.e. designs with Ny5 = kyk}/n, have the orthogonal block structure,
also.

Now, we can formulate

THEOREM 1. A design for two-way elimination of heterogeneity corresponding to the
linear model (1) with (2), (3), and ({) is a design with the orthogonal block structure.

3. Commutativity

DEFINITION 2. A design for two-way elimination of heterogeneity is said to have the
commutativity property if N1K; "IN/ R NoK; ' Nj = N K, 'NyR N KT IN/.
We will denote

Co=R-—rr'/n, C; =R -N;K{'N}, C; = R — NoK; !N,

C, =N, K{'N} - rr’/n, C. = NoK5'Nj —rr//n, and
Cre = R —N;K{'Nj + N, K, 'Nj + vt /n.
Moreover,
A = R—l/zclR_l/z, Ay = R_l/chR—l/2,
A, =R7V2C,R™Y? A, =R"Y?C.R? and A,.=R?C, R1/2.

The following lemma is concerned with relationships between the property of
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commutativity and the matrices defined above.

LEMMA 1. For a design for two-way elimination of heterogeneity corresponding to
the linear model (1), the following statements are equivalent:

a) NiKT NI R NK; 'NY = NoK; "N RN, KN,
b) CiR7ICy = C,RICy,

c) AjAy = AsA,,

d) A;A. = A A,

e) C;:R7I1C, = C.RIC,.

4. General balance

Now, let T = A’(AA')"1A = A’'R~1A. We notice that T? = T.

DEFINITION 3. (Speed, 1983). A design with an orthogonal block structure is said to
have the general balance property if the matrices TSeT, TS,T, ..., TS;T mutually
commute, i.e. TS;TS;T =TS,;TS;T, i#57=0,1, ...t

It is obvious that for a design for two-way elimination of heterogeneity satisfying
(5), the matrix TSyT commutes with the matrices TS; T, i =1, 2, 3. On the other
hand, the commutativity property of matrices TS;T is equivalent to commutativity of
matrices R"1/2AS8; A'R~1/2, Since AS; A/ = C,, AS; A’ =C,, and AS3A’ = C,,
then the general balance is satisfied if and only if the matrices A,, A., and A, all
commute. Since C,. = Cy — C, — C, we have

A A . =AA, iff CCR7!C,=C.R™!C,,

AA.=A A, iff CLRTIC,=C.RIC,,
AA..=A A iff CCRTIC.=CRIC,,

Now, using Lemma 1 we have

THEOREM 2. A design for two-way elimination of heterogeneity with the orthogonal
block structure corresponding to the linear model (1) with (2) and (3) is generally
balanced if and only if the design has the commutativity property.

Eccleston and Russell (1975) introduced the concept of orthogonality. For further
discussion see also Eccleston and Russell (1977) and Siatkowski (1993).
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DEFINITION 4. A design for two-way elimination of heterogeneity is said to have its
rows and columns strictly orthogonal if

N/R™IN; = Nps.

The next theorem deals with a relationship between the property of strict ortho-
gonality and the property of general balance.

THEOREM 3. If a design for two-way elimination of heterogeneity corresponding to
the linear model (1) with (2) and (3) is such that rank(N13) = 1 and has its rows
and columns strictly orthogonal, then the design is generally balanced.

Proof. 1t is known that rank(Njs) = 1 is equivalent to Nyo = k;jk}/n. Hence
N K NG RTINGK NG = Ny K IN K, 'N, =o' /n

and
No K7 'NGRIN KT ING = NoK; 'NjL K 'N) = rr'/n

imply the commutativity property. According to Theorem 2, the design is generally
balanced. O

Theorem 3 may be viewed as an extended version of the implication given in the
section 6 of Mejza (1992), who considered designs with Ny = 1,,1/,, only.

LEMMA 2. For a design for two-way elimination of heterogeneity corresponding to
the linear model (1), the following statements are equivalent:

a) rank(Ny) =1,

b) Ny =rk}, /n,

c) NthlN;1 =rr'/n

where h =1 or 2.

THEOREM 4. A design for two-way elimination of heterogeneity with the orthogonal
block structure corresponding to the linear model (1) satisfying one of the properties
(a) — (c) of Lemma 2 is generally balanced.

Berube and Styan (1993) and Siatkowski (1994) considered the class of designs
for two-way elimination of heterogeneity satisfying C = £,Cy + £,C, — £,Co, where
§1, &9, and §; > 0. Now, we show that for this class, the general balance property
is implied by the efficiency balance property, ie. C = (R — rr’/n) for some 0 €
(0,1] or by efficiency-balance of the treatment-row subdesign, i.e. C; = 6;(R —
rr’'/n) for some 6, € (0,1] or by efficiency-balance of the treatment-column subde-
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sign, i.e. Cg = 6(R —rr’/n) for some 65 € (0, 1].
THEOREM 5. If a connected design for two-way elimination of heterogeneity with the
orthogonal block structure satisfying C = £, Cy + £,Cqo — £,Cy is efficiency-balanced

or if its treatment-row or its treatment-column subdesign is efficiency-balanced, then
the design is generally balanced.

Proof. From Theorem 4 (Berube and Styan, 1993), if assumptions of the theorem
hold, it follows that the design satisfies the commutativity property, and hence, in
view of Theorem 2, the design is generally balanced. O

5. Example

Speed (1983) claims that ”all row-column designs, i.e. designs for two-way elimination
of heterogeneity with N2 = 1,1/, that have ever been used in practice satisfy the
property of general balance”. However, designs that do not satisfy this condition
exist. A simple example is due to Speed (1983). Another example is given below.

Ezample. For the equireplicated row-column design

1 4 2 5 3
4 35 15
1 2 31 2
5 4 3 2 4
3 2 5 4 1
we have
2 ilo —2 =1 4 =2 -2 0 0
1 1 20 -1 -2 -2 2 0 1
C,=- 0O 00 0 O0},C==|-2 0 2 -1 1|,
51 29 210 2 1 5l 0 1 -1 2 -2
—1 2.0 _1g 2 I e = )
6 -3 -3 -1 1
1 0 3 -3 4 -4
C,R'C.= — o o o0 o0 0],
1251 6 3 3 1 -1
0 -3 3 -4 4
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6 0 0 —6 0

1 -3 30 3 -3
CRC,=—| -3 -3 0 3 3],

12501 1 40 1 -4

1 -4 0 -1 4

and C,R™!1C, # C.R!C,, thus showing (in agreement with Lemma 1 and Theorem
2) that the property of general balance is not satisfied.
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